Arabic word descriptor for handwritten word indexing and lexicon reduction

نویسندگان

  • Youssouf Chherawala
  • Mohamed Cheriet
چکیده

Word recognition systems use a lexicon to guide the recognition process in order to improve the recognition rate. However, as the lexicon grows, the computation time increases. In this paper, we present the Arabic word descriptor (AWD) for Arabic word shape indexing and lexicon reduction in handwritten documents. It is formed in two stages. First, the structural descriptor (SD) is computed for each connected component (CC) of the word image. It describes the CC shape using the bag–of–words model, where each visual word represents a different local shape structure, extracted from the image with filters of different patterns and scales. Then, the AWD is formed by sorting and normalizing the SDs. This emphasizes the symbolic features of Arabic words, such as subwords and diacritics, without performing layout segmentation. In the context of lexicon reduction, the AWD is used to index a reference database. Given a query image, the reduced lexicon is obtained from the labels of the first entries in the indexed database. This framework ∗Corresponding author Email addresses: [email protected] (Youssouf Chherawala), [email protected] (Mohamed Cheriet) Tel.: +15143968972; fax: +15143968595. Preprint submitted to Pattern Recognition May 9, 2014 has been tested on Arabic word databases. It has a low computational overhead, while providing a compact descriptor, with state–of–the–art results for lexicon reduction on the Ibn Sina and IFN/ENIT databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک روش دو مرحلهای برای بازشناسی کلمات دستنوشته فارسی به کمک بلوکبندی تطبیقی گرادیان تصویر

This paper presented a two step method for offline handwritten Farsi word recognition. In first step, in order to improve the recognition accuracy and speed, an algorithm proposed for initial eliminating lexicon entries unlikely to match the input image. For lexicon reduction, the words of lexicon are clustered using ISOCLUS and Hierarchal clustering algorithm. Clustering is based on the featur...

متن کامل

W-TSV: Weighted topological signature vector for lexicon reduction in handwritten Arabic documents

This paper proposes a holistic lexicon-reduction method for ancient and modern handwritten Arabic documents. The word shape is represented by the weighted topological signature vector (W-TSV), which encodes graph data into a low-dimensional vector space. Three directed acyclic graph (DAG) representations are proposed for Arabic word shapes, based on topological and geometrical features. Lexicon...

متن کامل

Mixture of Experts for Persian handwritten word recognition

This paper presents the results of Persian handwritten word recognition based on Mixture of Experts technique. In the basic form of ME the problem space is automatically divided into several subspaces for the experts, and the outputs of experts are combined by a gating network. In our proposed model, we used Mixture of Experts Multi Layered Perceptrons with Momentum term, in the classification ...

متن کامل

Connected Component Based Word Spotting on Persian Handwritten image documents

Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...

متن کامل

A Search Engine for Handwritten Documents

The design and functionality of a versatile search engine on handwritten documents is described. Documents are indexed using global image features, e.g., stroke width, slant, word gaps, as well local features that describe shapes of characters and words. Image indexing is done automatically using page analysis, page segmentation, line separation, word segmentation and recognition of characters ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014